C-H Activation at Cationic Platinum(II) Centers

Matthew W. Holtcamp, Jay A. Labinger,* and John E. Bercaw*

Arnold and Mabel Beckman Laboratories of Chemical Synthesis, California Institute of Technology Pasadena, California 91125

Received June 19, 1996

The oxidation of alkanes to alcohols by aqueous solutions containing $[PtCl_4]^{2-}$ and $[PtCl_6]^{2-1}$ has been the subject of recent mechanistic studies.² These support a multistep mechanism, in which the key first step, the actual C-H bond activation, involves reaction of alkane with a Pt^{II} complex. Most of our evidence concerning the nature of this step comes indirectly, from studies on the microscopic reverse reactionprotonolysis of Pt^{II} alkyls such as $(tmeda)Pt(CH_3)_2$ (tmeda =N, N, N', N'-tetramethylethylenediamine)—which implicate both a σ complex, Pt^{II}(RH), and an oxidative adduct, Pt^{IV}(R)(H), as intermediates.³ To date, however, neither the intermolecular reaction of an alkane and a PtII complex to give a stable organoplatinum species nor the oxidation of alkanes by Pt^{II} complexes containing amine or phosphine ligands has been reported.⁴ Our findings suggested that a sufficiently electrophilic [(tmeda)- $Pt(CH_3)(solvent)]^+$ complex should be able to activate alkane C-H bonds. We report here our preliminary results that demonstrate such reactivity and strengthen the relevance of our model studies to the alkane oxidation mechanism.

Addition of 1 equiv of $[H(OEt_2)_n][BAr_f] \{BAr_f = B(3,5-C_6H_3 (CF_3)_2)_4$ ⁵ to an ether solution of $(tmeda)Pt(CH_3)_2$ at -70 °C gives [(tmeda)Pt(CH₃)(OEt₂)][BAr_f] (1).⁶ This complex is stable in solution at low temperature and may be isolated as a solid;⁷ but at room temperature in solution it slowly reacts, ultimately giving methane (92% collected by Toepler pump) and the carbene hydride complex 3.8 This transformation presumably proceeds via C-H activation to give 2 (Scheme 1).9 Only coordinated ether undergoes C-H activation, as 1 dissolved in Et₂O- d_{10} gives only CH₄, whereas 1- d_{10} in (C₂H₅)₂O gives CH₃D

(3) (a) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1995, 117, 9371. (b) Stahl, S. S.; Labinger, J. A.; Bercaw. J. E. J. Am. Chem. Soc. 1996, 118, 5961.

(4) A ¹H NMR signal attributed to $[Pt(CH_3)Cl_5]^{2-}$ was detected in a cooled reaction mixture following oxidation of methane;¹ however, no corresponding signal was observed under reaction conditions using a highpressure NMR cell: Horváth, I. T.; Cook, R. A.; Millar, J. M.; Kiss, G. Organometallics 1993, 12, 8. The electrophilic activation of arenes by trans-(Me₃P)₂Pt(neopentyl)(triflate) has been observed: Brainard, R. L.; Nutt,

 W. R.; Lee, T. R.; Whitesides, G. M. Organometallics 1988, 7, 2379.
(5) Brookhart, M.; Grant, B.; Volpe, J. Organometallics 1992, 11, 3920. (6) Related complexes with a different chelating ligand (a substituted 2,2'-bipyridine) have recently been reported: Hill, G. S.; Rendina, L. M.; Puddephatt, R. J. J. Chem. Soc., Dalton Trans. 1996, 1809.

(7) [(tmeda)Pt(CH₃)(OEt₂)][BAr_f] (1): Elem. Anal. Calcd for $C_{43}H_{41}N_2F_{24}BOPt: C, 40.87; H, 3.27; N, 2.22. Found: C, 40.98; H, 3.41; N, 2.21%. ¹H NMR (THF-d₈). <math>\delta$ 0.648 (s with Pt satellites, $J_{Pt-H} = 77$ Hz): 1.43 (t, 6H): 2.76 (s, 6H): 2.82 (s, 6H): 2.6–3.0 (m, 4H): 3.98 (q, 4H): 7.58 (s, 4H): 7.78 (s, 8H).

(8) $[(\text{tmeda})\text{Pt}(=\text{C}(\text{CH}_3)(\text{O}(\text{CH}_2\text{CH}_3)(\text{H})][\text{BAr}_f]$ (3): Elem. Anal. Calcd (b) [(Imeda)Pt(=C(CH₃)(OCH₂CH₃)(H)[[BAfr] (3): Elem. Anal. Caicd for C₄₂H₃₇N₂F₂₄BOPt: C, 40.43; H, 2.99; N, 2.24. Found: C, 41.19; H, 3.41; N, 2.19. ¹H NMR (Et₂O- d_{10}). δ -17.4 (s, 1H, J_{Pt-H} = 1640 Hz); 1.52 (t, 3H); 2.48 (m); 2.58 (s, 3H); 2.84 (s, 6H); 2.90 (s, 6H); 2.67 (s, (m); 5.23 (q, 2H); 7.58 (s, 4H); 7.78 (s, 8H). ¹³C NMR (Et₂O- d_{10}). δ 276 (J_{Pt-C} = 1250 Hz); 82.5 (J_{Pt-C} = 140 Hz); 62.8; 62.7; 52.9; 52.2; 44.9; 43.4 (J_{Pt-C} = 160 Hz) (plus anion peaks in the aromatic region). Scheme 1

(as well as some CH₄, CH₂D₂, and CHD₃; see below).¹⁰ Similar chemistry is observed in THF.11

Demonstration of intermolecular C-H activation requires a solvent that is not subject to activation itself, does not coordinate so strongly that alkane activation is blocked, and dissolves ionic complexes.¹² Pentafluoropyridine proves to be suitable: reaction of (tmeda)Pt(CH₃)₂ with [H(NC₅F₅)_n][BAr_f]¹³ in NC₅F₅ at 0 °C gives [(tmeda)Pt(CH₃)(NC₅F₅)][BAr_f] (5).¹⁴ At 85 °C in the presence of benzene 5 is converted to the phenyl analog (81% of methane collected by Toepler pump);¹⁵ while under 30 atm ¹³CH₄ the methyl exchange shown in eq 1 is demonstrated by the slow growth of the $Pt^{-13}CH_3$ resonance in the ¹³C NMR spectrum at -21 ppm (¹ $J_{PtC} = 725$ Hz). The latter reaction is accompanied by slow deposition of metallic platinum, which is connected to the C-H activation process: no Pt⁰ is observed upon heating 5 to 85 °C in the absence of hydrocarbon. Reaction with neopentane gives rapid decomposition of 5 to Pt^0 , while reaction with benzene gives only traces of metallic Pt.16

Upon heating **5** at 85 °C with cyclohexane- d_{12} , toluene- d_8 , or benzene- d_6 in pentafluoropyridine, the methane isotopomers

(10) A referee suggested an alternate possibility, that coordinated ether undergoes not oxidative addition to give 2 but rather electrophilic activation to liberate H⁺ which subsequently protonolyzes a Pt-CH₃ bond. This is ruled out by the following crossover experiment: reaction of a mixture of

funda out by the following crossover experiment: reaction of a mixture of [(tmeda)Pt(CH₃)(O(C₂D₅)₂)][BAr_f] and [(tmeda)Pt(¹³CH₃)(OE₂)][BAr_f] in C₅F₅N gives *no* methane containing both ¹³C and D. (11) [(tmeda)Pt(CH₃)(THF)][BAr_f]: Elem. Anal. Calcd for C₄₃H₃₉N₂F₂₄BOPt: C, 40.94; H, 3.12; N, 2.22. Found: C, 41.19; H, 3.41; N, 2.19. ¹H NMR (THF-*d*₈). δ 0.586 (s, 3H, *J*_{Pt-H} = 83 Hz); 1.43 (t, 6H); 2.76 (s, 6H); 2.82 (s, 6H); 2.6-3.0 (m, 4H); 3.98 (q, 4H); 7.58 (s, 4H); 7.78 (s, 4H). 7.78 (s, 8H). This compound also slowly converts to a carbene hydride analogous to 3.

(12) The reaction of (tmeda)Pt(CH₃)₂ with [H(Et₂O)₂][BAr_f] in chlorinated solvents such as dichloromethane and chlorobenzene results in C-Cl activation; the dimer [(tmeda)PtCl]2[BArf]2 can be isolated. The initial ¹H NMR spectrum reveals a complex mixture of products, but after several hours a crystalline product is isolated in 60% yield and identified as [(tmeda)PtCl]₂[BAr_f]₂ by X-ray crystallography, elemental analysis, and ¹H NMR. Elem. Anal. Calcd for $C_{38}H_{28}N_2F_{24}BClPt: C, 37.72; H, 2.33; N, 2.32. Found: C, 37.5; H, 2.52; N, 2.37. ¹H NMR (CD₂Cl₂): <math>\delta$ 2.5–3.2 (m, 16H); 7.6 (s 4H); 7.7 (s 8H).

(13) Prepared in situ by dissolving [H(Et₂O)₂][BAr_f] in pentafluoropy-

(14) [(tmeda)Pt(CH₃)(NC₅F₅)][BAr₁] (5). Elem. Anal. Calcd for C₄₄H₃₁N₃F₂₉BPt: C, 38.9; H, 2.3; N, 3.09. Found: C, 38.5; H, 2.7; N, 3.35. ¹H NMR (THF- d_8). δ 0.30 (s, 3H, $J_{Pt-H} = 75$ Hz); 2.65 (s, 6H); 2.96 (s, 6H); 2.6–3.2 (m, 4H); 7.58 (s, 4H); 7.78 (s, 8H).

(5, 6h), 2.6–5.2 (iii, 4h), 7.56 (5, 4H), 7.78 (5, 6H). (15) [(tmeda)Pt(C₆H₅)(NC₅F₅)][BAr_f]·NC₅F₅. Elem. Anal. Calcd for C₄₉H₃₃N₃F₂₉BPt·NC₅F₅: C, 40.8; H, 2.09; N, 3.52. Found: C, 40.43; H, 2.39; N, 3.43. ¹H NMR (NC₅F₅). δ 2.68 (s, 6H); 2.89 (s, 6H); 2.6–3.2 (m, 4H); 6.26 (t, 1H); 6.56 (t, 2H); 7.24 (sh, 1H, peak and Pt satellites obscured by BAr_f hydrogens); 7.26 (s, 4H); 7.67 (s, 8H). (16) On heating a solution of **5** (0.05 mmol) and neopentane (1.5 mmol)

in C_5F_5N (0.5 mL), visible formation of Pt metal began almost immediately; after several hours at 85 °C a sizable Pt mirror had formed. A similar reaction with benzene gave nearly complete conversion of 5 after 7 h at 115 °C with only a small amount of metallic Pt visible.

⁽¹⁾ Kushch, K. A.; Lavrushko, V. V.; Misharin, Yu. S.; Moravsky, A. P.; Shilov, A. E. New J. Chem. **1983**, 7, 729.

 ^{(2) (}a) Luinstra, G. A.; Wang, L.; Stahl, S. S.; Labinger, J. A.; Bercaw,
J. E. J. Organomet. Chem. 1995, 504, 75. (b) Luinstra, G. A.; Wang, L.;
Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Organometallics 1994, 13, 755. (c) Labinger, J. A.; Herring, A. M.; Lyon, D. K.; Luinstra, G. A.; Bercaw, J. E.; Horvath, I. T.; Eller, K. *Organometallics* **1993**, *12*, 895. (d) Labinger, J. A.; Herring, A. M.; Bercaw, J. E. J. Am. Chem. Soc. 1990, 112, 5628. (e) Luinstra, G. A.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1993, 115, 3004. (f) Kao, L.-C.; Hutson, A. C.; Sen, A. J. Am. Chem. Soc. 1991, 113, 700.

⁽⁹⁾ At early stages of the reaction ¹H NMR reveals several species which appear to include 4 and a vinyl ether complex in addition to 3. Over the course of a week all gradually convert to $\hat{3}$. Although 2 is shown as fivecoordinate, we believe such coordinatively unsaturated species exist only as transient intermediates (see ref 3b); most probably in its stable form 2 is six-coordinate, with solvent ether (or, conceivably, O from the ethoxyethyl group) completing the octahedron. The same applies to other five-coordinate structures shown (or implied) here.

CH₄, CH₃D, CH₂D₂, and CHD₃ are observed by ¹H NMR after several days.¹⁷ Similar (multiple) H/D exchange observed in protonolysis of (tmeda)Pt(CH₃)₂(H)Cl³ has been interpreted in terms of an equilibrium between Pt^{IV} dialkyl hydride and Pt^{II} σ -complex species (Scheme 2). The possibility that multiple exchange occurs via reversible loss and readdition of methane is ruled out by heating **5** with C₆D₆ under ¹³CH₄; no methane containing both ¹³C and D is observed.

It should be noted that very similar activation of alkane and ether C–H bonds is observed for the Ir^{III} complexes [Cp*Ir(PMe₃)(CH₃)(ClCH₂Cl)][BAr_f] and Cp*Ir(PMe₃)(CH₃)-(OTf).¹⁸ A σ -bond metathesis mechanism has been offered as

Scheme 2

$$\left[\left(\bigvee_{N}^{N} \bigvee_{CH_{3}}^{W} \mathsf{Pt}^{\parallel} \bigvee_{CH_{3}}^{W} \mathsf{RD} \right) \right]^{+} = \left[\left(\bigvee_{N}^{N} \bigvee_{CH_{3}}^{W} \mathsf{Pt}^{\parallel} \bigvee_{CH_{3}}^{W} \mathsf{R} \right]^{+} = \left[\left(\bigvee_{N}^{N} \bigvee_{CH_{3}}^{W} \mathsf{Pt}^{\parallel} \bigvee_{CH_{3}}^{W} \mathsf{R} \right)^{+} \right]^{+} = \left[\left(\bigvee_{N}^{N} \bigvee_{CH_{3}}^{W} \mathsf{Pt}^{\parallel} \bigvee_{CH_{3}}^{W} \mathsf{R} \right)^{+} \right]^{+} = \left[\left(\bigvee_{N}^{N} \bigvee_{CH_{3}}^{W} \mathsf{Pt}^{\parallel} \bigvee_{CH_{3}}^{W} \mathsf{R} \right)^{+} \right]^{+} = \left[\left(\bigvee_{N}^{N} \bigvee_{CH_{3}}^{W} \mathsf{Pt}^{\parallel} \bigvee_{CH_{3}}^{W} \mathsf{R} \right)^{+} \right]^{+} = \left[\left(\bigvee_{N}^{W} \bigvee_{CH_{3}}^{W} \mathsf{Pt}^{\parallel} \bigvee_{CH_{3}}^{W} \mathsf{R} \right)^{+} \right]^{+} = \left[\left(\bigvee_{N}^{W} \bigvee_{CH_{3}}^{W} \mathsf{Pt}^{\parallel} \bigvee_{CH_{3}}^{W} \mathsf{Pt}^{\vee} \bigvee_{CH_{3}}^{W} \mathsf{Pt}^{\parallel} \bigvee_{CH_{3}}^{W} \mathsf{Pt}^{\vee} V \mathsf{Pt}^{\vee} \mathsf{Pt}^{\vee} V \mathsf{Pt}^{\vee} \mathsf{Pt}^{\vee} V \mathsf{P$$

an alternative to oxidative addition as in Scheme 2, perhaps partly because of the unattractiveness of the Ir^{V} intermediate required for the latter.¹⁹ We cannot exclude σ -bond metathesis for reactions of **1** and **5**, although the multiple H/D exchange requires at a minimum that there be an intermediate, such as a σ complex (Scheme 2), with significant lifetime. Delineation of the various modes of C–H activation and their applicability to catalytic alkane functionalization remains the subject of further study.

Acknowledgment. We thank the Army Research Office for support and Shannon S. Stahl for many helpful discussions.

JA9620595

⁽¹⁷⁾ In a typical experiment, using C₆D₆, the product distribution of CH₄: CH₃D:CH₂D₂ was approximately 4:7:9 (by ¹H NMR), with a few percent of CHD₃. The CH₄ probably arises from competing reaction and/or exchange with protonic impurities on glass surfaces and elsewhere, as prewashing the NMR tube with D₂O followed by thorough drying reduces the relative yield of CH₄ by half. Only a few percent of CH₄ is obtained in decomposition of [(tmcda)Pt(CH₃)(O(C₂D₅)₂)][BAr_f].

^{(18) (}a) Luecke, H. F.; Arndtsen, B. A.; Burger, P.; Bergman, R. G. J. Am. Chem. Soc. **1996**, 118, 2517. (b) Arndtsen, B. A.; Bergman, R. G. Science **1995**, 270, 1970.

⁽¹⁹⁾ A recent theoretical study supports oxidative addition over σ -bond metathesis for the Ir case: Strout, D. L.; Zaric, S.; Niu, S.; Hall, M. B. J. Am. Chem. Soc. **1996**, 118, 6068.